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ABSTRACT

The ability to determine the structural dynamics of space-

based platforms from ground-based radar resolved Doppler

measurements will aid in the study of control/structure

interaction. The Naval Research Laboratory and Lincoln

Laboratory conducted an experiment to determine the

feasibility of this method. To accomplish this experiment the

LACE satellite was equipped with retroreflectors and the

ground-based Firepond laser radar facility was employed.

Vibrational information is found from the difference between

the reflected Doppler frequencies of the retroreflectors. The

method of extracting the Doppler separation was to obtain the

power spectrum of the heterodyne signal envelope. A pulse-by-

pulse processing of the data yields the Doppler separation

history over time. Due to a relatively large amount of

clutter in the processed data, a filtering mechanism was

employed. The histogram technique is the current filtering-

based method employed to obtain a Doppler separation history.

This thesis addresses the implementation of the Kalman filter

algorithm in conjunction with the Rauch-Tung-Striebel fixed-

interval optimal smoother algorithm to perform this filtering

task. The Kalman smoother filtering based method of processing

the data produced superior results when compared with the

histogram filtering based method.
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I. INTRODUCTION

Control/structure interaction (CSI) is the interaction

between control systems and the platform or the structural

appendages. The problem of control/structure interaction is

of great interest in the development of new space-based

platforms. There are unique problems associated with the

ground-based testing of structures designed for weightless

environments. In strong gravitational fields spaced-based

platforms exhibit different structural characteristics than

those found in a weightless environment. This presents

problems in developing models to simulate the structural

dynamics based on data obtained from ground level

experimentation. An ideal way to develop accurate models using

experimental data is to obtain the data while the platform is

in orbit. There are various methods that could be utilized to

accomplish this task. A method that does not involve

telemetric links or sophisticated electronic hardware

installed on the platform is remote ground-based Doppler

resolved measurements. These ground-based Doppler resolved

measurements will then be used to analyze the structural

dynamics of the platform. The Naval Research Laboratory [Ref.

1] and Lincoln Laboratory (Ref. 2] have been sponsoring a

series of experiments to determine the feasibility of using

the ground-based Doppler resolved measurement approach.
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To accomplish this study, the Laser Atmospheric

Compensated Experiment (LACE) Satellite (object number 20496)

was equipped with three germanium IR retroreflectors prior to

launch. These IR retroreflectors were located on the forward

boom, trailing boom, and body of the satellite as indicated in

Figure 1.

+Z
B GRAVITY GRADIENT BOOM

• BALANCE BOOM ft 45.72 m (150 f)
-45.72 m (150 AL) A -DEPLOYABLEIRETRACTABLE
-DEPLOYABLE/RETRACTABLE -90.7 Kg (200 Ib) TIP MASS

WrrH MAGNETIC DAMPER

TIP MASS RETROREFLECTOR BOOM
-15.9 KS (35 Ib) -45.72 m (150 ft)

-GERMANIUM -DEPLOYABLE/RETRACTABLE

CORNER CUBE•SOLAR PANELS / '

LEADING RETROREFLECTOR
+x X -15.9 Kg (35 Ib) TIP MASS

+YNGERMANIUM 
CORNER CUBE

SENSOR ARRAY SUBSYSTEM
-GERMANIUM CORNER CUBE ON
Z FACE OF BODY

Figure 1. LACE Spacecraft (Fig la from Ref. 1)

The retroreflectors are then illuminated with the ground-

based Firepond laser radar as depicted in Figure 2. The

Firepond is a coherent narrowband 10.6 micrometer laser radar
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* EST" !ATE SATELLITE VIBRATION MODES
FROM DOPPLER RESOLVED LASER RADAR MEASUREMENTS

- - - . VELOCITY

*REFERENCE LACE ORBIT
-556 Km MAXIMUM ALTITUDE

-INCLINATION 43

NARROW BAND

Figure 2. Primary Experiment [Fig lb from Ref. 1]

facility. The reflected signals from the satellite contained

Doppler frequency components proportional to the relative

velocity of the germanium retroreflectors projected along the

radar line-of-sight. The Doppler separation is the difference

between the Doppler frequencies of the retroreflectors. The

procedure employed in the extraction of this Doppler

separation from the reflected signal consisted of obtaining

the power spectrum of the heterodyne signal envelope. This

method greatly reduced the tolerance requirement of the

equipment and calculations needed to extract the Doppler

separation data from the measurements.
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One major drawback to this method is that noise rejection

for this system is poor. The Doppler separation history

obtained from the pulse-by-pulse processing had a significant

amount of clutter. Lincoln Laboratory used a histogram

filtering based technique for further noise rejection to

obtain a Doppler separation history. Another approach to this

problem, explored in the following chapters, will consist of

the use of a Kalman Filter in conjunction with the

Rauch-Tung-Striebel fixed interval optimal smoother. The

Kalman filter is used to estimate the Doppler frequency and

control a dynamic tracking window. This method of extracting

the information components from the data showed a remarkable

improvement in the resolution of the LACE satellite's Doppler

separation history over the histogram filtering-based

technique.

The basic theory and the equations used in the LACE

signal processing are discussed in the second chapter. In

Chapter III the Kalman filter equations and performance

characteristics are discussed. The Rauch-Tung-Striebel fixed

interval smoother is discussed in Chapter IV. The remaining

two chapters are devoted to the description of how the Kalman

filter and the Rauch-Tung-Striebel fixed interval optimal

smoother were utilized in this application and the results

obtained.
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A. THE LACE DYNAMICS EXPERIMENT

Lincoln Laboratory discusses the experiment and the

procedures employed for the analysis of the narrowband IR

measurements obtained for the 13 and 18 July 1990 [Ref. 2]. On

both days, the LACE satellite's configuration had the leading

boom's extension at 4.6 meters (15 feet) and the trailing

bjom's extension at 46 meters (150 feet). This configuration

had been set up for a significant time prior to the

illumination to eliminate any vibrational modes that might

have been excited by the boom's movement. On both tracking

runs, the Firepond laser radar had a peak transmit power of

780 watts, a pulse duration of 1.5 milliseconds, and a pulse

repetition frequency (PRF) of 62.5 Hz. The maximum elevation

that the LACE satellite achieved relative to the Firepond

laser radar site on 13 July was 82 degrees and on 18 July was

77 degrees. Due to the transmission beam's footprint of 12

meters at the minimum range of 547 kilometers, only the

leading boom's retroreflector and body's retroreflector were

illuminated.

The procedure that was used in the analysis of the

received data first consisted of digitizing 3.4 milliseconds

of the in-phase and uadrature(IQ) data at 1.2 MHz (generating

4080 complex IQ samples). These complex IQ samples were then

squared to yield the IQ envelope as shown in Figure 3. This

figure shows the first radar return obtained from the tape for

18 July 1990. The power spectral density from the IQ envelope

5



was then obtained. Figure 4 depicts the power spectral

density of Figure 3. Observation of this radar return

indicates a nominal 12 kHz Doppler separation.

The Doppler separation history obtained from the pulse-

by-pulse processing had a significant amount of clutter.

Consequently, a filtering-based technique had to be employed

to extract the information component from the processed data.

3.5xlO .

3

2.5 .. . . . ... ............ ....... ............... ...L- 

Z
2 .5

0. .5 . ..... .. ... . .. ... .. .
0

0 0.5 1 1.5 2 2.5 3 .5

RELATIVE TIME (ms)

Figure 3. LACE IQ Envelope, GMT DAY 200, 7603.875

Seconds After Midnight
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Figure 4. Power Spectrum of IQ Envelope, GMT DAY 200,
7603.875 Seconds After Midnight

This filtering-based technique consisted of taking the

maximum value of a 2 second (125 point) moving histogram to

determine the most likely Doppler separation track. Figure 5

for 13 July 1990 and Figure 6 for 18 July 1990 illustrates the
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results obtained by using this method. In analyzing Figures 5

and 6, it is evident that both histories are parabolic in

nature. The biggest difference between the two Doppler

separation histories is the existence of a flatter track for

13 July. Obtaining the power spectrum of these Doppler

separation histories will reveal the frequency components

resulting from the structural dynamics of the craft.
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Figure 5. Doppler Separation, GMT DAY 195, 2 Second Iteration
7Fig 7a from Ref. 2)
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II. LACE SIGNAL PROCESSING

LACE Signal Processing refers to the equations and

procedures required to describe the signal processing of the

received signal and the calculation of the power spectrum of

this received signal. This process is represented in Figure 7,

where LO represents the local oscillator and LPF represents

the low pass filter. AID is the analog to digital converter.

FFT represents the fast Fourier transform. S2(n) is the

squared in-phase component and S2(n) is the squared quadrature

s,(n)

Fiur 7. LFACE Sig a Proesin Blc2iga

Cos Wo S 2 (n)0 y(k)I j
sin Wo t) s 2(n)

x LPF -wAID ()

s,(n)

Figure 7. LACE Signal Processing Block Diagram
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component of the signal. The other terms in this figure are

described in Equations (1) through (6). The equations used to

describe the LACE Signal Processing were derived in References

3 and 4.

The signal received from the LACE satellite consisted of

the components from both the forward boom's retroreflector and

the body's retroreflector. Equation (1) is a mathematical

representation of a noise free signal:

S(t) =aIcos [ ((O+Co) t+41] +a 2cos [ (OO+d2) t+4 2 ]  (1)

where the following terms apply to this equation:

s(t)-is the received signal,

al-is the amplitude of the leading retroreflector,

a2 -is the amplitude of the body retroreflector,

W0-is the carrier frequency,

(dz-is the Doppler frequency of the leading
retroreflector,

Wd2-is the Doppler frequency from the body
retroreflector,

*1-is the phase return of the leading retroreflector, and

42-is the phase return of the body retroreflector.

This signal is then processed by the laser radar to yield the

in-phase and quadrature components of the signal. The in-phase

and quadrature components are passed through a LPF and an AID

11



converter. The two resulting signals are described

mathematically by Equations (2) and (3):

S.(n) ' cos (QdnT4q) + cos (cd2nT+42 ) )
2

=-nasin(dlnT+4) +-L2sin( d2fnT+402 ) (3)
2 2

where the following terms apply to these equations:

s1 (n) -is the in-phase component and

s,(n)-is the quadrature component.

The IQ envelope was obtained by adding together the squared

in-phase and squared quadrature components generated by the

radar. This signal is represented by Equation (4):

(n) =(a2+a2)n (aa 2 )(-n= 1 ) + (aa)nCos [ (Wd1,- d2) n+03,-421 (4 )
4 2

where the following term applies to this equation:

sV(n)-is the IQ envelope.

12



Equations (5) and (6) are used to calculate the power spectrum

of the IQ envelope:

N -1 j( 2 )1 2 J
y(k) =s (n)e N (5)

n-0

PSs (k) =y (k)yk)* (6)

where the tollowing terms applies to these equation:

y(k)-is the complex signal (Fourier transform of IQ
envelope),

y(k)*-is the complex conjugate of the complex signal,

N -is the transform length, and

PSs2(k) -is the power spectrum.

This results in one peak located at the Doppler separation

frequency as was indicated in Figure 4.

13



III. KALMAN FILTER

The Kalman filter was developed in 1960 by Dr R. E.

Kalman as an optimal recursive filter for the estimation of a

state vector from measurement data corrupted by noise. It

offered advantages over other filters such as the Wiener

filter in that it reduces the mathematical complexity of the

processing of large data strings. A block diagram of the

Kalman filter is depicted in Figure 8, where DELAY represents

one discrete-time delay. The rest of the terms in this figure

are discussed in Equations (7) through (16).

Z(k+l) K k) ?(k+l jk+l)

Figure 8. Kalman Filter Block Diagram
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The Kalman filter equations are derived in References 5

and 6. It is assumed that the process is time invariant. A

mathematical model of the system is given below. The

discrete-time state equation is represented by Equation (7):

X(k+l) =FX(k) +Gv(k) (7)

The measurement equation is represented by Equation (8):

Z(k+l) =HX(k+I) +Dw(k) (8)

where the following terms apply to the two preceding

equations:

X(k+l)-is the updated state vector,

X(k)-is the state vector,

F -is the state transition matrix,

v(k)-is the discrete time process noise assumed to be a
zero-mean, white, random sequence,

Z(k+l)-is the measurement vector,

H -is the gain through which the output leaves the system,

w(k) -is the discrete time measurement noise assumed to be
a zero-mean, white, random sequence,

G -is the gain through which the process noise enters the
system, and

15



D -is the gain through which the measurement noise enters

the system.

The equations involved specifically in the Kalman filter

algorithm are discussed by dividing then into the prediction,

innovation, gain and correction parts. In the prediction

section, the conditional mean of the state vector (Equation

9), the conditional state error covariance matrix (Equation

10), and the predicted measurement vector (Equation 11) are

computed:

,?(k+l 1k) =F,?(klk) (9 )

P(k+l k) =FP(klk) F T+GQG T (10)

f (k+1 1k) =HX(k+l 1k) ( 11 )

where the following terms apply to these three equations:

?(k+llk)-is the conditional state estimate,

?(klk) -is the previous state estimate,

P(k~llk)-is the conditional predicted state error
covariance matrix,

Q -is the covariance of the process noise,

16



P(klk) -is the previous predicted state error covariance

matrix, and

.(k+llk)-is the estimated measurement.

The innovation section calculates the error between the

measurement equations and the innovation covariance. Equation

(12) calculates the measurement residual or innovation between

Equations (8) and (11):

e(k+lIk) =Z(k+i) -f(k+l k) (12)

Equation (13) determines the innovation covariance:

S(k+Ijk) =HP(k+I[k)HT DRD T (13)

where the following terms apply to these two equations:

e(k+lk)-is the innovation or measurement residual,

S(k+l1k)-is the innovation covariance, and

R-is the measurement noise covariance.

The Kalman filer gain or weighting factor is found by Equation

(14):

K(k) =P(k+llk)JHTS(k+llk) -1 (14)

17



where:

K(k)-is the Kalman filter gain.

The Kalman gain is the weighting factor that is placed on the

measurement residual and the covariance prediction in the

correction phase. Equation (15) corrects the old estimated

state and the covariance correction is found by Equation (16):

Y(k+l Ik+l) =X(k+l Ik) +K(k) e (k+1llk) (15)

P(k+l k+1) = [I-K(k) H] P(k+l k) (16)

where the following terms apply to these two equations:

X?(k+lk+l)-is the updated state estimate,

P(k+lIk+l)-is the updated predicted state error
covariance, and

I -is the identity matrix.

The preceding equations are then used recursively in the

discussed order to obtain estimates of the state at a given k.

There are two major factors that can affect the

performance of the Kalman filter [Ref. 7), the first being the

Kalman filter parameters such as process noise covariance,

measurement noise covariance, and the initial conditions.

These parameters are the fine tuning mechanisms of the filter.

18



It is seen in the Kalman filter equations that the gain is

dependent on the prediction covariance and the measurement

noise covariance. The prediction covariance is also dependent

on the process noise covariance. If the process noise

covariance in Equation (10) is increased, the prediction

covariance increases. Therefore, the Kalman filter gain in

Equation (14) can be considered as a trade off between the

covariance of the process noise to the covariance of the

measurement noise. With this in mind, as the process noise

covariance increases, the Kalman filter gain increases and

consequently, the bandwidth increases. This forces a faster

transient response which leads to more noise in the estimates

generated by Equation (11). By decreasing the measurement

noise covariance in Equation (13), the same effect can be

achieved. If the process noise covariance is decreased then

the opposite effect will occur, which means that less noise

will be present in the estimated states. With respect to the

initial conditions chosen, the only part of the algorithm

affected will be the transient part. As more data is processed

the initial conditions fade eventually reaching a steady state

value. By choosing a large prediction covariance more emphasis

will be put on the measurements and less on the model in the

transient phase. The second major factor affecting the Kalman

filter performance is the model type. Since the model is used

to generate the estimated states it should be as close to the

physical phenomenon as possible. If the type of model chosen

19



for a particular process is correct with only time constants

slightly off, some degeneration will occur. On the other hand,

if the system is modeled incorrectly, a model mismatch will

result. A model mismatch can cause the estimate states to

diverge from the actual states. It can be seen through the

preceding discussion of the filter parameters and the choice

of the model, the importance of correct modeling in the

achievement of optimal performance from the Kalman filter

[Ref. 8].

20



IV. FIXED INTERVAL OPTIMAL SMOOTHER

The Rauch-Tung-Striebel fixed interval optimal smoother

was designed to be a post processing algorithm to be used in

conjunction with a Kalman filter. This algorithm will improve

the results obtained from the Kalman filter by utilizing the

future information not available during the Kalman filtering

process. The fixed interval optimal smoothing algorithm

recalculates each estimate generated from the Kalman filter

based on the information obtained for the entire set of data

analyzed. This procedure generates what is called the smoothed

estimates as seen in the block diagram of Figure 9, where the

term ADV represents one discrete-time advance. The other

terms are discussed in Equations (17) and (18).

XCklk

)?k1 I 
SA(k) n)

.?(k+l in) ' ADV

Figure 9. Fixed Interval Optimal Smoother Block Diagram
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The Rauch-Tung-Striebel fixed interval optimal smoothing

algorithm was derived in Reference 5. Equation (17)

calculates a weighting factor:

A (k) =P(klk) FTP(K+lI k) -1 (17)

where:

A(k)-is the smoothing algorithm gain,

F -is the state transitional matrix from the Kalman
filter,

P(klk)-is the prediction covariance from the Kalman
filter, and

P(K+lIk) -is the conditional prediction covariance from
the Kalman filter.

This weighting factor does not depend on past gains, just the

conditional prediction error covariance and the previous

prediction error covariance from the Kalman filter for a

particular discrete-time. If more uncertainty exists in the

forward filter, the weighting factor becomes larger. Equation

(18) is the second equation involved in this algorithm which

calculates the smoothed estimates:

)t(kjn) =A'(klk) +A(k) [A(k+1 In) -A(k+l k) ] (18)

22



where:

n -is the final time,

Y(kln)-is the smoothed state estimate,

Y(klk)-is the state estimate from the Kalman filter,

X(k+lln)-is the previous smoothed state estimate, and

Xi(k+llk)-is the conditional state estimate from the
Kalman filter.

The next equation is not involved in the algorithm, but is

useful in determining how well the smoothing is being

accomplished.

P(kln) =P(klk) +A (k) [ P(k+ l In) -P(k+ l Ik) ]A (k) T (19)

where:

P(kn) -is the smoothed state error covariance

P(k+lIn) -is the previous smooth state error covariance

These equations, excluding Equation (19), are used recursively

in the discussed order to obtain the smoothed estimates.

It is seen from the preceding equations that this

algorithm has no performance parameter that can be adjusted.

Consequently, it depends solely on the accuracy of the Kalman

filter's parameters. The gain in Equation (17) is dependent on

the covariance error of the previous and conditional values.

This gain is then applied to the difference between the smooth

estimate calculated for the previous data point and the

23



corresponding predicted value generated by the Kalman filter.

The Kalman filter estimate is then adjusted by this weighted

difference as in Equation (18) [Ref. 9]. This means that the

predicted states, corrected states, predicted covariance, and

corrected covariance for each data point must be saved during

the forward processing operation.

24



V. KALMAN SMOOTHER APPLIED TO LACE

The Doppler separation history for the LACE satellite is

determined by utilizing the Kalman filter and the

Rauch-Tung-Striebel fixed interval optimal smoother. Numerous

preliminary steps were required to extract the Doppler

separation from each pulse and ultimately obtain the Dcppler

separation history. The data first had to be read from the

tape and converted into data files to be loaded into the

Matlab environment for processing (Ref. 10]. An algorithm had

to be developed to perform the preliminary processing of the

data as discussed in the second chapter. The Kalman filter and

the Rauch-Tung-Striebel fixed interval optimal smoother

algorithms had to be implemented. A dynamic tracking window

controlled by the Kalman filter had to be designed to track

the desired frequency contained in the power spectrum for each

radar pulse. Bad data had to be identified and eliminated

during the processing phase. Adequate plotting routines had

to be developed so that a good visual pulse-by-pulse analysis

of selected data could be performed to ensure that the results

were, in fact, what was expected. The following paragraphs

discuss the previously-mentioned items in more detail with

respect to the subroutines that were developed to perform

these tasks.
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The data received for 13 and 18 July 1990 consisted of

approximately 9200 records per tape (120 seconds of data in

binary form). Only 4500 records from each tape were processed

in order to retain continuity with respect to the amount of

data processed with the histogram filtering based method.

Each record represents one radar pulse, which is 3.4

milliseconds of IQ data digitized at 1.2 MHz. Subroutine

DFSIOC found in the appendix, performs the task of extracting

this information from the tape and coordinating the other

subroutines to process the data. This subroutine enables radar

pulses or records to be read from any specified run time to

any other specified run time by adjusting the skip and count

on the tape drive control line (!rsh srvl "dd if=/dev/nrmto

ibs=16384 count=100 skip=0 > bin.dat).

Subroutine BIN2INT found in the appendix was developed

using Fortran [Ref. 11] to convert the binary in-phase,

quadrature, and timing information from the tape into an

integer format capable of being loaded into the Matlab

environment. Fortran was used in this application because

Matlab does not have this conversion capability. The binary

data is converted by BIN2INT, one record (16384 bytes or

characters) at a time, into an integer format. Of the 16384

characters, 1 to 16360 characters contained the IQ data for

the radar pulse, 16361 to 16367 characters contained the

timing information for the radar pulse, and the remaining 18

characters are not used. The storage of the IQ data on the
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tape alternated between a byte of in-phase and a byte of

quadrature data. The timing information was stored in

consecutive nibbles. The IQ information that subroutine

BIN2INT converted is then stored in a data file called

IQ_DAT.dat and the timing information is stored in a data file

called TimDat.dat. These data files are then sequentially

loaded into the Matlab environment.

Once the IQ data was converted into integer format and

loaded into the Matlab environment, the next step was to

process the data. The first, second, and third steps in

subroutine DFSCAL, found in the appendix, performed the

procedure discussed in the second chapter. These steps

consisted of adding together the squared in-phase and squared

quadrature components as in Equation (4) to produce the IQ

envelope. The IQ envelope of a sample radar pulse is plotted

in Figure 3. The conversion from the time domain to the

frequency domain is accomplished by taking the fast Fourier

transform of the IQ envelope and then calculating the power

spectral density as in Equations (5) and (6). The results are

shown in Figure 4 for the sample radar pulse depicted in

Figure 3.

The next step involved tracking the particular frequency

of interest (the Doppler separation) contained in the power

spectrum for each radar pulse. A dynamic tracking window

controlled by a Kalman filter was designed to perform this

function. In the development of the dynamic window, two
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aspects had to be resolved: location and size. The location of

the window was determined by centering it around the Doppler

separation estimate obtained from the Kalman filter. The size

of the window had to be large enough to track the change in

frequency, but small enough to reject unwanted frequencies.

Tracking these unwanted frequencies would cause the window's

location to drift from the desired frequency. Window size

control was achieved by setting the window's size equal to the

prediction state error covariance from the Kalman filter plus

two times the frequency resolution of the fast Fourier

transform. The use of the prediction state error covariance

plus two times the frequency resolution was empirically

determined to be the parameter that produced the best results.

The Doppler separation is then determined by obtaining the

corresponding frequency of the peak magnitude within the

window. This corresponding frequency of the peak magnitude is

entered in Equation (12) of the Kalman filter as the

measurement. The measurement is processed with the Kalman

filter as discussed in the third chapter.

The first obstacle encountered in processing the data was

the clutter mentioned in References 1 and 2. This clutter or

bad data can cause the tracking mechanism in subroutine DFSCAL

to drift from the actual Doppler separation track if not

addressed. Figure 10 was obtained by plotting the peak
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Figure 10. Fixed Window, Unfiltered Data, GMT DAY 195

magnitude within a fixed window from 4 kHz to 14 kHz. Each dot

in this figure represents one radar return that could contain

either the accurate Doppler separation information or the

apparent clutter. In analyzing the power spectrums of selected

radar pulses there exists three distinct types of radar

returns: ones that contained accurate Doppler separation

information; ones that contained accurate Doppler separation

information corrupted by noise; and ones that are just noise

or an extremely weak signal embedded in noise. The IQ envelope

of a sample radar return that contains accurate Doppler

separation information is depicted in Figure 11. Figure 12

shows the power spectrum of this radar return and the dynamic

tracking window. The dashed lines represent the window. The
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solid lines indicate the power spectrum of the IQ envelope.

The dotted ilne traces the outline of the power spectrum. The

power spectral density being centered around a single

frequency in Figure 12 is a good indication that this radar

return contains accurate Doppler separation information. A

sample radar return which contains accurate Doppler separation

information corrupted by noise is represented by Figure 13 and

its power spectrum is shown in Figure 14. In this case, the

Kalman filter's filtering mechanism will eliminate any large

deviations from occurring in the Doppler separation history.

The third type of radar return is when there was just noise or

an extremely weak signal embedded in noise. This type is

represented in Figure 15. The power spectrum of this indicates

the presence of noise as seen in Figure 16. Comparing Figure

16 to Figure 14, a difference in magnitudes is revealed. This

type of superfluous data is eliminated by placing a magnitude

constraint on the particular frequency of interest within the

dynamic window. The incorporation of the conditional statement

(if MAGD(K+I)<MAGD(K)+Ie2 MAGD(K+)>MAGD(K)-1e2) into

subroutine DFSCAL performs this task. This conditional

statement differentiates between the magnitude of the last

good radar return and the present radar return to determine if

the relative magnitude is within a fixed distance of the last

radar return. If this condition is met, the Kalman filter

algorithm is used as described in the third chapter. On the
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other hand, if this condition is not met, then the estimate of

the Doppler separation frequency is not updated and the

prediction covariance is increased by setting it equal to the

conditional predicted state error covariance. This will cause

the dynamic window to increase in size and place more emphasis

on the next valid measurement within the window.

The next obstacle encountered in the implementation of

the Kalman filter, was determining the type of model best

suited for the data. In developing the model for the Kalman

filter, the histogram-based tracks for 13 and 18 July in the

first chapter were analyzed to determined if a differential

equation could be applied to the trajectory of the LACE

satellite. After examining these figures, the development of

an elaborate model to simulate the parabolic trajectory of the

LACE satellite was virtually impossible to realize. The reason

was due to the different elevations and azimuths the satellite

could incur each time it was tracked. This leads to the

slightly different trajectories as noted earlier with Figures

5 and 6. A very simple model approach was then used. Adequate

results were obtained using a first order model whose state is

the Doppler separation in the frequency domain. Having the

state of the model be a scalar quantity greatly simplifies the

algorithm. To determine the value for the state transition

matrix F, the parabolic nature of the histogram based tracks

were taken into account. This meant that a frequency increase

would occur at the start of a tracking run. After a maximum
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value was reached during the tracking run, there would occur

a frequency decrease. The only eigenvalue for the F that would

not cause degeneration to occur, is the value one. If an

eigenvalue greater or less than unity is used, the estimated

frequency will diverge either for the increasing Doppler or

the decreasing Doppler, depending on which value was chosen.

When the preliminary processing of the data and the

Kalman filtering had been accomplished, the Doppler separation

estimates were ready to be smoothed. Subroutine DFSBFS found

in the appendix was developed to perform this task. This

subroutine implements the Rauch-Tung-Striebel fixed interval

optimal smoother equations as discussed in the fourth chapter.

Subroutine PLOT4 found in the appendix is utilized to plot the

results obtained from this subroutine.

The final step was to determine the value for the

measurement noise covariance (R), the process noise covariance

(Q), and the initial conditions that would optimize the

processing algorithm. The initial conditions consisted of the

prediction estimate covariance (p(O)), the Doppler separation

estimate (XFREQ (0)), and the relative magnitude of the Doppler

separation (MAGD(O)). Subroutine DFSVAL found in the appendix

is used to initialize the parameters for all the subroutines.

The initial Doppler separation frequency is determined by the

point at which the analysis is started for a particular

tracking run. The first radar return to be processed for 18

July 1990 was depicted in Figure 3. The frequency of 12.012
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kHz obtained from this figure is used to initialize the

Doppler separation estimate for the filter. The prediction

estimate covariance was set to 292.969 Hz, since this was the

frequency resolution obtained. The initial magnitude is

determined to be 100 by checking the beginning data. The

value for the process noise covariance (Q) was varied from

292.969 Hz to 7.324 Hz. The measurement noise covariance (R)

was varied between 292.969 Hz and 2929.690 Hz. In empirically

obtaining the optimal values for the process noise covariance

and the measurement noise covariance, they were initially set

at 292.969 Hz. By setting the process noise covariance and the

measurement noise covariance to this value, the Kalman filter

tracked every deviation no matter how off track they were.

Figure 17 shows this undesirable result. The process noise

covariance was when reduced to 146.485 Hz with the measurement

noise covariance still set at 292.969 Hz in an attempt to gain

more filtering from the Kalman filter. This showed some

improvement in the noise rejection performance of the filter

as indicated by Figure 18. Increasing the measurement noise

ten times to 2929.960 Hz with the process noise covariance

left at 146.485 Hz vastly improved the performance of the

filter, which is seen in Figure 19. Based upon the previous

results, the process noise covariance was further reduced to

7.324 Hz leaving the measurement noise covariance at 2929.690

Hz. A good track of the Doppler separation history was
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obtained as indicated in Figure 20 for 18 July 1990. Figure 21

shows the Doppler separation history for 13 July 1990.
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VI. CONCLUSION

The results obtained in the previous chapter have

demonstrated the effectiveness of the Kalman filter in

conjunction with the Rauch-Tung-Striebel fixed interval

optimal smoother as a post processing utility in determining

the Doppler separation history from the data. To compare the

effectiveness of the two filtering-based techniques, Figure 22

for 13 July 1990 and Figure 23 for 18 July 1990, were

developed. Figure 22 is the combination of Figures 5 and 21,

where Figure 23 is the combination of Figures 6 and 20.
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In both figures, the dashed lines are the results obtained

from the histogram filtering-based method, the solid lines are

for the method utilized in this thesis, and the dots represent

the unfiltered data. Analysis of these figures demonstrates

that the method used in this thesis of determining the Doppler

separation history for both days is far superior to that of

the histogram filtering based technique.
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APPENDIX
SUBROUTINES DEVELOPED TO PROCESS THE DATA

The following subroutines are designed to function
together with subroutine DFSIOC as the primary subroutine. The
data is read from the tape in equally-sized blocks that are
consecutively processed. The block sizes can vary from 1 to
whatever size the computer is capable of handling. The number
of blocks or groups can be varied from 1 to the amount of data
to be processed. To use this package, the following must
reflect the same values: the number of groups (GRNO) in
subroutines DFSIOC and DFSVAL; the terminal count in the main
loop of BIN2INT and the number of records per group (PSNO) in
DFSVAL; the count in the tape drive control line of DFSIOC and
the number of records per group (PSNO) in DFSVAL. These
subroutines at present are set up to process 4500 records in
groups of 100 (GRNO=45, PSNO=l00).

* DFSIOC
To initiate this subroutine to process the data, just

enter DFSIOC in the Matlab environment. DFSIOC will perform
the task of extracting the information from the tape and
coordinating subroutines DFSVAL, BIN2INT, DFSCAL, DFSBFS,
PLOT3, and PLOT4. The data extracted from the tape is stored
in a temp file called Bin.dat. It loads the data that was
converted (binary to integer) from the temp file (Bin.dat) by
BIN2INT into the Matlab environment for further processing.
PSNO in this subroutine must reflect the same end count as
PSNO in subroutine DFSVAL. In the tape drive control line,
count is the number of records to be read and skip is the
number of records to be passed over. Count must reflect the
same value as PSNO in subroutine DFSVAL. The other options
available are: to plot the data using PLOT3 and PLOT4; to save
the data with the save function.

SUBROUTINE DFSIOC

dfsval; %ALLS SUBROUTINE DFSVAL
for GRNOZ1:1:45 %MAIN LOOP TO PROCESS DATA

Irsh srvi Odd if-/dev/nrmtOi bs-16384 %TAPE DRIVE CONTROL (READS)
count-ZO0 skipO0 >bin.dat
Jbin2int %CALLS SUBROUTINE BIN2INT
Irm /staff/1thorngre/bin.dat %CLEARS TEMPORARY DATA FILE
load IQ DAT.dat %LOADS IQ DATA FILE
load TiMDAT.dat %LOADS TIMING INFORMATION
TimDAT1 -T1mOATZ;TimDAT(:,6)); %SAVES TIMING INFORMATION
DAY-Ti nDAT(l,1); %SAVES GMT DAY OF TRACK
dfscal; %CALLS SUBROUTINE DFSCAL
clear IQDAT TimDAT %CLEARS UNNECESSARY DATA

end %END OF THE MAIN LOOP
dfsbfa %CALLS SUBROUTINE DFSBFS
Irsh srvl mt rw %REWINDS TAPE TO BEGINING
plot3; CALLS SUBROUTINE PLOT3-OPT
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plot4, %CALLS SUBROUTINE PLaT4 OPT
%save DSF.dat DSF -ascii %SAVES DATA IN ASCII FORMAT
%save XDSF.dat XMFR.EQ -asci
%save BXDSF.dat BXDSF -ascii
%save TimDAT1 .dat TimDATZ -asci
%save DAY.dat DAY -ascii

*DFSVAL
Declares and sets the parameters used in the subroutines

DFSIOC, DFSCAL, PLOTi, PLOT2, PLOT3, and PLOT4. PSNO is the
number of records in the group (GRNO). These must reflect the
values used in DFSIOC and BININT. Subroutine DFSVAL is called
by subroutine DFSIOC.

% SUBROUTINE DFSVAL
GRNO=45; %NO OF GROUPS OF PULSES
PSNO=100; %K0 OF PULSES PER GROUP
RECLN=81 60; %LENGTH OF DATA PER PULSE
Freq=292.969.*(0:2047); %CREATES FREQUENCY VECTOR
Time=(0:4079)/(1.206); %CREATES TIME VECTOR FOR IQ'^2
TinDAT-f); %UNDETERMINED TIMIG VECTOR
G=zeros(PSNO*GRNO+1..1); %SETS UP KALMAN GAIN VECTOR
P=zeros(PSNO*GRJO2,1); %SETS UP COV PRED VECTOR
PP=zeros(PSNO*GRNO+1,1); %SETS UP CON COV PRED VECTOR
DSF-zeros(PSNO*GRNO+1,1); %SETS UP DSF FIXED WINDOW VET
DSFW=zeros(PSNO*GRNO+1,1); %SETS UP DYNAMIC WINDOW VET
XDSF-zeros(PSNO*GRNO+1,1I); %SETS UP ESTIMATED DSF VET
XM~FREQzers(PSNO*GRNO+1,1); %SETS UP CON EST STATE VET
XFREQ=zeros(PSNO*GRNO+1,1); %SETS UP ESTIMATED STATE VET
BXDSF=zeros(PSNO*GRNO+1,1); %SETS UP SMOOTH EST DSF
MAGD=zeros(PSNO*GRNO+1,1); %SETS UP MAUJ VECTOR FOR D.W.
DAY=(1,1); %GMT DAY oF TRiACKING RUN
Magfi=(1..1); %MAX MAG IN FIXED WINDOW
treqf!=(1,l); %INDEX OF MAX FREQ IN F.W.
maqd1=(J,1); %MAX MAG IN DYNAMIC WINDOW
freqd1=(1,1.); %INDEX OF MAX FREQ IN D.W.
freq11=(1,1); %INDEX OF LOWER LIMIT D.W.
frequi=(1 ,1); %INDEX OF UPPER LIMIT D.W.
F= (1); %TRANSITIONAL STATE MATRIX
G= [1); %INPUT WEIGHTING FACTOR

D-t~j,%INPUT WEIGHTING FACTOR
Cm (1); %OUTPUT WEIGHTING FACTOR
Q=(292 .969*0.025); %PROCESS NOISE COVARIANCE
R-[292.969*10J, %MEASUREMENT NOISE COVARIANCE
P(1)inf292.969*1J; %INIZTIAL COV PRED ESTIMATE
MAGD()-[2.5e2 1); %INITIAL MAGNITUDE OF PSD
XFREQ(1)-1292 .969*41); %INITIAL FREQUENCY ESTIMATE

*BININT
Has been written in Fortran to convert the binary data

obtained from the tape into integer format. The input format
is in binary byte form from the temp file Bin.dat. There are
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16384 bytes of data in a record of which 16360 bytes are
inphase and quadrature data, 6 bytes are the timing
information, and the rest are not used. There are no
delimiters between values. The output format consists of 16
f ormat f or the data and is stored in IQ_DAT. dat. The output
for the timing information is F4.4 format and is stored in
TimDAT.dat. The main loop in this subroutine must specify the
numbers of records that are going to be processed per group
(PSNO) in subroutine DFSVAL. BIN2INT at present is set up to
process 100 records. This subroutine is called by subroutine
DFSIOC.

c SUBROUTINE BIN2INT
c DECLARES VARIABLES

character*1 cdat(16384)
integer'2 jdat(8192)
integer*2 nibblea(0:11)
integer*2 tcdat(0:2)
real day,hour,min,zec,milTIME
equivalence (cdat,jdat)

c OPENS THE DATA FILE CALLED 'BIN.DAT' FOR DIRECT, UNFORMATTED READ
c AND OUTPUTS TWO FILES CALLED IQ DAT. DAT' AND 'TINDAT .DAT'.

open(l ,flie- '/staff/thorngre/bwi.dat', access- 'direct',
&recd-i6384 ,form= 'unformatted')
open (2 ,f i.e- 'IDAT.dat')
open(3,file-'TimDAT.dat')

c LOOP TO READ DATA INFORMATION AND OUTPUT IT TO A FILE
15 do 60, i-1,100

read(1, rec-i)cdat
do 20, j-2,8192

h'rite(2, 1020)jdat(j)
1020 format (16)
20 continue
c LOOP TO READ TIMING INFORMATION

do 30, k-0,2
tcdat(k)-jdat(8181+k)

30 continue
c LOOP TO CALCULATE TIME FROM TIMING INFORMATION AND OUTPUT IT
C TO AFILE

do 40 1-0,11,4
nibblos(l+0)-and(rshift(tcdat(l/4) ,12) ,15)
nibblos(l+1)-and(rshift(tcdat(l/4) ,8) ,15)
nibblea(1+2)-and(rmhift(tcdat(l/4) ,4) ,15)
nibbles(l+3)-and(tcdat(l/4) ,15)

40 continue
day-nibblos(0) '100+nibblea(1 )'10+Jnibbles (2)
hour-nibblea(3) O1O+nibbles(4)
mmn-nibbles(S) '1O+nibblez(6)
sec-nibbles(7) '10+nibblea(8)

mil-nibbles(9)*100.nibbles(10) .10+nibbles(1 1)
time-60*60*houre60*min+aec+ (mu/bIOG)
write(3, 1030)day,hour,min,sec,mil, time

1030 format(f4,lx,f4,lx,f4,lx,f4,1x,f4, lx,fbO.4)
60 continue

end

44



* DFSCAL
Processes records that contain the inphase and quadrature

data to obtain the IQ envelope, power spectrum of the IQ
envelope, and the estimated Doppler separation history. The
Kalman Filter algorithm is implemented to perform two
functions. The first is to provide control for the dynamic
window's location and size. The second is to provide a good
estimation of the Doppler separation from the measured data.
The conditional statement is used to check the magnitude of
the data. The fixed window in this subroutine provides an
observation of the unfiltered data. The options available in
DFSCAL are to view IQ envelope and the power spectrum of the
IQ envelope subroutine PLOT1 or subroutine PLOT2. This
subroutine is called by DFSIOC.

SUBROUTINE DFSCAL
for K-(GRNO*PSNO-PSNO+I)*1:(GRNO*PSNO) %LOOP TO CALCULATE DSP/PULSE

IQS NO-i; %INITIAL COUNTER FOR IQDAT
for k-1:2:RECLN %LOOP TO CALCULATE 1Q^2

IOSDAT(ZQS NO)-(IQDAT(k+(IQSNO-I) ...
*8192))-2+(IQDAT(k+ ...
1+(IQSNO-J)*8192))-2;

IQSNO=IQS.NO+I;
end %END OF LOOP TO CAL 1Qg2
1QSFFT-fft(IQS._DAT,4096); %CALCULATES FFT OF IQ2
IQSPSD-IQSFFT.*conj(10SFFT); %CALCULATES POWER SPECTRUM
[magfi freqfi)-max(IQSPSD(15:49)); %FIXED WINDOW 4KHz AT 14KHz
freqfi=froqfi+14; %INDEX CORRECTION
DSF(R)-Freq(froqfi); %DETERMINE DSP FROM INDEX
XMFREQ(K+I) -F*XFREQ(K); %UPDATES ESTIMATED STATE
XDSF(K)-C*XMFREQ(K+I); %CALCULATE ESTIMATED DSF
PP(K)=(F*P(K)*F')+(Gl*Q*G '); %UPDATE CON PRED COVARIANCE
G(K)=PP(K)*Cl*inv(C*(PP(K)*C'+D*R*D')); %CALCULATE KALMAN FILTER GAIN
freqli=round((XDSF(K)-PP(K))/292.969); %LOWER INDEX FOR WINDOW
frequi=round(((XDSF(K)+PP(X))/292.969)+2); %UPPER INDEX FOR WINDOW
[magdi freqdij=max(IQSPSD(freqli... %INDEX MAX MAG WITHIN WINDOW

:frequi));
freqdi-freqli~freqdi-1; %INDEX CORRECTION
DSFW(K)-Freq(freqdi); %DETERMINES FREQ FROM INDEX
MAGD(K+Z)-magdi; %SAVES NAG FOR EACH LOOP
if MAGD(K+I)<MAGD(K)+1.2 I... %CONDITIONAL TEST FOR PULSE

MAGD(K 1)>MAGD(K)-1e2, %PULSE CONTAINS USEFUL DATA
XFREQ(K+Z)-XMFREQ(K+I)+G(K) ... %UPDATES STATE

* (DSFW(K)-XDSF(K));
P(K+I)-(eye(1)-G(K)*C)*PP(K); %UPDATES COVARIANCE PREDICTION

else %PULSE HAS NO USEFUL DATA
XFREQ(K+I)-XMFREQ(K+I ); %STATE EQUALS CON EST STATE
P(K+I)-PP(K); %SET COV PRED TO CON COV PRED
DSFW (K)-O; %NO MEASUREMENT OBTAINED

end %END OF CONDITIONAL STATEMENT
% ploti %CALLS SUBROUTINE PLOTI-OPT
% plot2 %CALLS SUBROUTINE PLOT2-OPT
end %END OF LOOP TO CALCULATE DSF
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* DFSBFS
Was developed based on the Rauch-Tung-Striebel fixed-

interval optimal smoother algorithm to provide a smoothed
estimate Doppler separation history. This subroutine is called
by DFSIOC.

% SUBROUTINE DFSBFS

BXDSF( I:PSNO*GRNO+ )-XFREQ(1 :PSNO*GRNO+I); %INITIALIZES 1ST VALUE BDSF
for nuPSNO*GRNO:-I :1 %LOOP TO CALCULATE BACKWARDS

A-P(n+1 )*F'* (inv(PP(n) )); %CALCULATES SMOOTHING GAIN
BXDSF(n)-XFRE(n)+(A*(BXDSF(nl) ... %UPDATS SMOOTH ESTIMATE DSF

-XMFaEQ(n 1) ) );
end %END OF LOOP CAL BACKWARDS

* PLOT1
Plots the IQ envelope for the radar pulse to the monitor.

The option in PLOT1 is to save the plot by using the meta
function. This subroutine is called by DFSCAL.

% SUBROUTINE PLOTI
ci ci -(['SECONDS AFTER MIDNIGHT ",... %TIMING INFORMATION HEADER

num2str(TimDAr1 (K,1))1)
title2-(["GMT DAY ",num2str(DAY)]); %TIMING INFORMATION HEADER

plot(Time(1:4080),IQSDAT(1:4080)),grid %PLOTS IQ ENVELOPE DATA
title(['LACE IQ ENVELOPE,",title2]) %PLOT TITLE
text(I, ,titlel, "Sc"); %PLOTS TIMING INFORMATION
yl abel ( "RELATIVE MAGNITUDE), %PLOTS Y-AXIS LABEL
xlabel(TIME (ms)'), %PLOTS X-AXIS LABEL
%meta sxal %SAVES PLOT-OPTIONAL

* PLOT2
Plots the power spectrum of the IQ envelope and the

dynamic window for the radar pulse to the monitor. The option
in PLOT2 is to save the plot by using the meta function. This
subroutine is called by DFSCAL.

% SUBROUTINE PLOT2
titlel-([ "SECONDS AFTER MIDNIGHT I,... %TIMING INFORMATION HEADER

num2str(TimDAT1 (X,1))])
title2-(["GMT DAY ',num2xtr(DAY))); %TIMING INFORMATION HEADER

plot(Freq(freqli-1S:frequl15),IQSPSD ... %PLOTS OUTLINE PWR SPECTRUM
(freqli-15:frequil$),":r'),hold on %RETAINS PLOT IN MEMORY

Y1GRA-O:magluaagl;Y 1GRA-[magi magi); %SETS UP DYNAMIC WINDOW VET
XIGRA-Freq(freqli) *(onee(1 :length(YZGRA) J )
X2GRA-(Freq(frequl) * (ones(1 :length(Y1GRA))))';
Y2GRA=Freq(freqli) :Freq(frequi)-Freq ...

(freql) :Freq(frequi);
plot(XIGRAY1GRA,'--g',X2GRA,YJGRA,'--g'), %PLOTS SIDES DYNAMIC WINDOW
plot(Y2GRA,YIIGRA,"--g'), %PLOTS TOP OF DYNAMIC WINDOW
magdis-[zeroa(freqli-1S:frequi+15);... %SETS UP POWER SPECTRUM
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IQSPSD (freq.i-15 :freqUi+15) ...
;zeros(freql2.-15:frequi+15));

indexs'(Freq(freqli'1S:frequi+15) ;Freq..
(freqli-15:frequi+1S);Froq(freqli ...

-15:frequi+15));
magdis=(magdis(:)');
indexs-'indexs(:) 'J;
plot (indexs,magdis, '-r') ,gr.id %PLOTS POWER SPECTRUM
title(('POWER SPECTRUM OF I9 ENVELOPE,',title2)
text(1,1,title1,'sc'); %PLOTS SECONDS AFTER MIDNIGHT
xlabel( 'FREQUENCY (ICHz)'), %PLOTS X-AXIS LABEL
yl abel( 'RELATIVE MAGNITUDE'), %PLOTS Y-AXIS LABEL

%meta sxs2 %SAVES PLOT-OPTIONAL
hold off %RELEASES PLOT FROM MEMORY

*PLOT3
Plots the unfiltered data in the fixed window and the

estimated Doppler separation history to the -onitor. The
option in PLOT3 is to save the plot by using the meta
function. This subroutine is called by DFSIOC.

% SUBROUTINE PLOT3
title2('GMT DAY ',num2ztr(DAY)J); %TIMING INFORMATION HEADER
title3(I'Q? - ,num2str(Q)J)) %PROCESS NOISE COVARIANCE
title4(('R - ',num2ztr(R)J); %MEASUREMENT NOISE COV
ax~zs([TimDAT1(l,1) TiffDAT(l.Ingth(TimnDATJ) ... %DETERMINES AXIS FOR PLOT

,1) 0 200001)
plot(TimDAT1,DSF(1:lelngth(TimDATI),1),'.r',...%PLOTS DATA

TimDAT,XDSF(:ength(TimDAT),), '-g');
titlo(['DOPPLER SEPARATION,',title2)) %PLOTS TITLE
text (2,1,title3,'ac'), %PLOTS PROCESS NOISE COV
text(3,1,title4,'8c'), %PLOTS MEASUREMENT NOISE COV
xlabel('SECONDS AFTER MIDNIGHT'), %PLOTS X-AXIS LABEL
ylabel( 'DOPPLER SEPARATION (EN z)'), %PLOTS Y-AXIS LABEL
%meta sxs4 %SAVES PLOT-OPTIONAL

*PLOT4
Plots the smoothed Doppler separation history to the

monitor. The option in PLOT4 is to save the plot by using the
meta function. This subroutine is called by DFSIOC.

% SUBROUTINE PLOT4
titl2('GMT DAY ',nua2ztr(DAY)j) %TIMING INFORMATION HEADER
titl.3(('Q a ',num2ztr(Q))); %PROCESS NOISE COVARIANCE
t~tled(f'R a ',num2atr(R)]) %MEASUREMENT NOISE COV
axis(tTimDATJ(1,1) Ti~nDAT1(length(TirnDAT1) ... %DETERMINES AXIS FOR PLOT

,1) 0 20000)
plot(TimDAT,BXDSF(:lengh(TimDAT),),... %PLOTS SMOOTH EST DSF

'r'),grid;
eiel.(f'DOPPLER SEPARqATION, ',title2jl, %PLOTS TITLE
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text (2,1 ,titl.3,'ac'), %PLOTS PROCESS NOISE COY
text(3,1,titl@4,'8c'), %PLOTS MEASUREMENT NOIS COY
xlab.1 ( SECONDS AFTER MIDNIGHT'), %PLOTS X-AXIS LABEL
ylabl ( 'DOPPLER SEPARATION (XHz)'), %PLOTS Y-AXIS LABEL
%meta sxs4 %SAVES PLOT-OPTIONAL
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